In this study, we present a novel method to detect airborne particulates using air-coupled photoacoustics, with a goal toward detecting viral content in respiratory droplets. The peak photoacoustic frequency emitted from micrometer-sized particulates is over 1000 MHz, but at this frequency, the signals are highly attenuated in air. Measurements were taken using a thin planar absorber and ultrasound transducers with peak sensitivity between 50 kHz and 2000 kHz and a 532 nm pulsed laser to determine the optimum detection frequency. 350 kHz to 500 kHz provided the highest amplitude signal while minimizing attenuation in air. To simulate the expulsion of respiratory droplets, an atomizer device was used to spray droplets into open air through a pulsed laser. Droplets were composed of water, water with acridine orange dye, and water with gold nanoparticles. The dye and nanoparticles were chosen due to their similarity in the UV absorption peaks when compared to RNA. Using a 260 nm laser, the average photoacoustic signal from water was the highest, and then the signal decreased with dye or nanoparticles. Increasing absorber concentrations within their respective solutions resulted in a decreasing photoacoustic signal, which is opposite to our expectations. Monte Carlo simulations demonstrated that depending on the droplet dimensions, water droplets focus photons to create a localized fluence elevation. Absorbers within the droplet can inhibit photon travel through the droplet, decreasing the fluence. Photoacoustic signals are created through optical absorption within the droplet, potentially amplified with the localized fluence increase through the droplet focusing effect, with a trade-off in signal amplitude depending on the absorber concentration.