Spatiotemporal organization of prefrontal norepinephrine influences neuronal activity.
Samira Glaeser-KhanNeil K SavaliaJianna CressyJiesi FengYu-Long LiAlex C KwanAlfred P KayePublished in: bioRxiv : the preprint server for biology (2023)
Norepinephrine (NE), a neuromodulator released by locus coeruleus neurons throughout cortex, influences arousal and learning through extra-synaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the PFC affect neuronal firing, we employed in-vivo two-photon imaging of layer 2/3 of PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. We found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.