Login / Signup

From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.

Qiang WuLijun YangXizhang WangZheng Hu
Published in: Accounts of chemical research (2017)
Carbon-based nanomaterials have been the focus of research interests in the past 30 years due to their abundant microstructures and morphologies, excellent properties, and wide potential applications, as landmarked by 0D fullerene, 1D nanotubes, and 2D graphene. With the availability of high specific surface area (SSA), well-balanced pore distribution, high conductivity, and tunable wettability, carbon-based nanomaterials are highly expected as advanced materials for energy conversion and storage to meet the increasing demands for clean and renewable energies. In this context, attention is usually attracted by the star material of graphene in recent years. In this Account, we overview our studies on carbon-based nanotubes to nanocages for energy conversion and storage, including their synthesis, performances, and related mechanisms. The two carbon nanostructures have the common features of interior cavity, high conductivity, and easy doping but much different SSAs and pore distributions, leading to different performances. We demonstrated a six-membered-ring-based growth mechanism of carbon nanotubes (CNTs) with benzene precursor based on the structural similarity of the benzene ring to the building unit of CNTs. By this mechanism, nitrogen-doped CNTs (NCNTs) with homogeneous N distribution and predominant pyridinic N were obtained with pyridine precursor, providing a new kind of support for convenient surface functionalization via N-participation. Accordingly, various transition-metal nanoparticles were directly immobilized onto NCNTs without premodification. The so-constructed catalysts featured high dispersion, narrow size distribution and tunable composition, which presented superior catalytic performances for energy conversions, for example, the oxygen reduction reaction (ORR) and methanol oxidation in fuel cells. With the advent of the new field of carbon-based metal-free electrocatalysts, we first extended ORR catalysts from the electron-rich N-doped to the electron-deficient B-doped sp2 carbon. The combined experimental and theoretical study indicated the ORR activity originated from the activation of carbon π electrons by breaking the integrity of π conjugation, despite the electron-rich or electron-deficient nature of the dopants. With this understanding, metal-free electrocatalysts were further extended to the dopant-free defective carbon nanomaterials. Moreover, we developed novel 3D hierarchical carbon-based nanocages by the in situ MgO template method, which featured coexisting micro-meso-macropores and much larger SSA than the nanotubes. The unique 3D architecture avoids the restacking generally faced by 2D graphene due to the intrinsic π-π interaction. Consequently, the hierarchical nanocages presented superior performances not only as new catalyst supports and metal-free electrocatalysts but also as electrode materials for energy storage. State-of-the-art supercapacitive performances were achieved with high energy density and power density, as well as excellent rate capability and cycling stability. The large interior space of the nanocages enabled the encapsulation of high-loading sulfur to alleviate polysulfide dissolution while greatly enhancing the electron conduction and Li-ion diffusion, leading to top level performance of lithium-sulfur battery. These results not only provide unique carbon-based nanomaterials but also lead to in-depth understanding of growth mechanisms, material design, and structure-performance relationships, which is significant to promote their energy applications and also to enrich the exciting field of carbon-based nanomaterials.
Keyphrases
  • highly efficient
  • room temperature
  • quantum dots
  • nitric oxide
  • oxidative stress
  • mass spectrometry
  • hydrogen peroxide
  • working memory
  • carbon dioxide
  • drug induced