A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries.
Wen RenDi WuYanna NuliXuan ZhangJun YangJiulin WangPublished in: ACS applied materials & interfaces (2021)
The electrolyte based on magnesium bis(diisopropyl)amide (MBA), a low-cost and non-nucleophilic organic magnesium salt, is proposed to be an admirable alternative for rechargeable magnesium batteries but suffers from limited ionic conductivity and an inferior electrochemical window in the commonly used ether solvents. In this work, the 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide (PP14TFSI) ionic liquid as the cosolvent of tetrahydrofuran (THF) in chlorine-free MBA-based electrolytes has been first demonstrated to remarkably improve the ionic conductivity and broaden the oxidative stable potential (2.2 V vs Mg/Mg2+) on stainless steel. Reversible Mg electrochemical plating/stripping with a low overpotential below 200 mV and ca. 90% Coulombic efficiency are obtained. The current density of Mg plating/stripping is increased 238 times after the addition of PP14TFSI, where the mechanism of competitive coordination of TFSI- making an easier Mg plating/stripping is proposed theoretically. The MBA-2AlF3 electrolyte with a ratio-optimized THF/PP14TFSI cosolvent exhibits good compatibility with the Mo6S8 cathode. Furthermore, the Se@pPAN|Mg full cell exhibits an initial capacity of 447.8 mAh g-1 and as low as ∼0.66% capacity decay per cycle for more than 70 cycles at 0.2 C with the synergy of LiTFSI additives. The facile modification strategy of ionic liquid in the MBA-based electrolyte sheds inspiring light on exploring non-nucleophilic and chlorine-free electrolytes for practical rechargeable magnesium batteries.