Login / Signup

Investigating greenhouse gas adsorption in MOFs SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu through computational studies.

Walber Gonçalves GuimarãesGuilherme Ferreira de Lima
Published in: Journal of molecular modeling (2020)
The selective adsorption of CO2 in mixture with other greenhouse gases by porous materials is challenging and it has several consequences from the environmental and economic point of view. We carried out DFT calculations with periodic boundary conditions and plane waves basis set to better understand the adsorption of CO2, CO, CH4, N2, O2, and H2 within the pore of the metal-organic frameworks (MOFs) SIFSIX-2-Cu, SIFSIX-2-Cu-i, and SIFSIX-3-Cu. These porous materials have a copper ion coordinated to an organic linker and the inorganic SiF62- pillar, and they show a remarkable CO2 uptake. Our results show that the adsorption occurs preferentially close to the inorganic pillar SiF6, which polarizes the gas molecule, increasing the electrostatic contribution to the interaction. The adsorption strength correlates with the size of the pore, and it is stronger in the smaller porous of SIFSIX-3-Cu for all gases. The successive loading of CO2 in a T-shape form inside the porous indicates a synergic polarization effect, increasing the adsorption energy in SIFSIX-2-Cu and SIFSIX-2-Cu-i, but not in SIFSIX-3-Cu. For all materials, we observe the following order in the adsorption energy: CO2 > CH4 > CO > N2 > O2 > H2, suggesting that a thermodynamic separation could be possible; however, kinetic effects are also important in SIFSIX-3-Cu. Graphical abstract.
Keyphrases
  • aqueous solution
  • metal organic framework
  • mass spectrometry
  • risk assessment
  • molecular dynamics
  • climate change
  • human health
  • ionic liquid