Login / Signup

Mechanically Induced Hydrophobic Recovery of Poly(dimethylsiloxane) (PDMS) for the Generation of Surfaces with Patterned Wettability.

Ali J MazaltarimJay M TaylorAbhiteja KondaMichael A StollerStephen A Morin
Published in: ACS applied materials & interfaces (2019)
Silicone elastomers are used in a variety of "stretchable" technologies (e.g., wearable electronics and soft robotics) that require the elastomeric components to accommodate varying magnitudes of mechanical stress during operation; however, there is limited understanding of how mechanical stress influences the surface chemistry of these elastomeric components despite the potential importance of this property with regards to overall function. In this study, plasma-oxidized silicone (poly(dimethylsiloxane)) films were systematically subjected to various amounts of tensile stress and the resulting surface chemical changes were monitored using contact angle measurements, X-ray photoelectron spectroscopy, and gas chromatography-mass spectrometry. Understanding the influence of mechanical stress on these materials made possible the development of a facile method for the rapid, on-demand switching of surface wettability and the generation of surface wettability patterns and gradients. The use of mechanical stress to control surface wettability is broadly applicable to the fields of microfluidics, soft robotics, printing, and to the design of adaptable materials and sensors.
Keyphrases