Development and Analytical Validation of a Surface-Enhanced Raman Scattering Paper Lateral Flow Immunoassay for Detection of the Ubiquitin C-Terminal Hydrolase-L1 Traumatic Brain Injury Biomarker.
Weirui TanYingjie HangAnyang WangJiacheng WangJane G WiggintonSusanne MuehlschlegelNianqiang WuPublished in: ACS omega (2024)
Paper lateral flow immunoassays combined with surface-enhanced Raman scattering (SERS) technology have gained increasing attention due to their high sensitivity characteristics resulting from the amplified SERS signals of the plasmon-enhanced optical probes. In contrast to conventional colorimetric lateral flow strips, SERS paper lateral flow strips (SERS-PLFSs) are currently not commercially available for widespread use. Analytical validation is the key step for commercialization. In this work, we have developed a PLFS with a hierarchical SERS probe (gold-silver nanoparticle@Raman reporter@silica) for detection of the US Food and Drug Administration (FDA)-approved traumatic brain injury (TBI) protein biomarker, ubiquitin C-terminal hydrolase-L1 (UCH-L1), in blood plasma samples. Analytical validation has been performed on this SERS-PLFS in terms of the limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, selectivity, and stability. The SERS-PLFS exhibits a reportable range of 0.2-100 ng/mL with a LOD of 0.08 ng/mL toward measurement of UCH-L1 in blood plasma. The SERS-PLFS has been applied to clinical TBI samples. The test results were compared with those from enzyme-linked immunosorbent assay (ELISA), demonstrating a strong correlation between the two analytical methods. This study has important implications in the commercialization of SERS-PLFSs for rapid TBI detection in clinical practice.
Keyphrases
- sensitive detection
- gold nanoparticles
- label free
- traumatic brain injury
- loop mediated isothermal amplification
- raman spectroscopy
- quantum dots
- small molecule
- drug administration
- clinical practice
- real time pcr
- crispr cas
- magnetic resonance
- magnetic resonance imaging
- high throughput
- risk assessment
- working memory
- silver nanoparticles