I lie, why don't you: Neural mechanisms of individual differences in self-serving lying.
Lijun YinBernd WeberPublished in: Human brain mapping (2018)
People tend to lie in varying degrees. To advance our understanding of the underlying neural mechanisms of this heterogeneity, we investigated individual differences in self-serving lying. We performed a functional magnetic resonance imaging study in 37 participants and introduced a color-reporting game where lying about the color would in general lead to higher monetary payoffs but would also be punished if get caught. At the behavioral level, individuals lied to different extents. Besides, individuals who are more dishonest showed shorter lying response time, whereas no significant correlation was found between truth-telling response time and the degree of dishonesty. At the neural level, the left caudate, ventromedial prefrontal cortex (vmPFC), right inferior frontal gyrus (IFG), and left dorsolateral prefrontal cortex (dlPFC) were key regions reflecting individual differences in making dishonest decisions. The dishonesty associated activity in these regions decreased with increased dishonesty. Subsequent generalized psychophysiological interaction analyses showed that individual differences in self-serving lying were associated with the functional connectivity among the caudate, vmPFC, IFG, and dlPFC. More importantly, regardless of the decision types, the neural patterns of the left caudate and vmPFC during the decision-making phase could be used to predict individual degrees of dishonesty. The present study demonstrated that lying decisions differ substantially from person to person in the functional connectivity and neural activation patterns which can be used to predict individual degrees of dishonesty.