Login / Signup

Applications of Plasma-Assisted Systems for Advanced Electrode Material Synthesis and Modification.

Shaobo LiZhongchen LuBin YuanRenzong HuMin Zhu
Published in: ACS applied materials & interfaces (2021)
Research on advanced electrode materials (AEMs) has been explosive for the past decades and constantly promotes the development of batteries, supercapacitors, electrocatalysis, and photovoltaic applications. However, traditional preparation and modification methods can no longer meet the increasing requirements of some AEMs because some of the special reactions are thermodynamically and/or kinetically unfavorable and thus need harsh conditions. Among various recently developed advanced materials synthesis and modification routes, the plasma-assisted (PA) method has received increasing attention because of its unique and different "species reactivity" nature, as well as its wider and adjustable operating conditions. In this Spotlight on Applications, we highlight some recent developments and describe our recent progress by applying PA systems in the synthesis and modification of AEMs, including direct processing, PA deposition, and plasma milling (P-milling). The mechanisms of how plasma works for specific reactions are reviewed and discussed. It is shown that the PA technique has become a powerful and efficient tool in the following areas, including but not limited to materials synthesis, doping, surface modification, and functionalization. Finally, the prospect and challenges are also proposed for AEM preparation and modification using PA systems. This article aims to provide up-to-date information about the progress of PA technology in the fields of chemistry and materials science.
Keyphrases
  • solid state
  • healthcare
  • mass spectrometry
  • gold nanoparticles
  • molecularly imprinted
  • social media
  • current status