Login / Signup

Genetic Architecture of Early Vigor Traits in Wild Soybean.

Janice KofskyHengyou ZhangBao-Hua Song
Published in: International journal of molecular sciences (2020)
A worldwide food shortage has been projected as a result of the current increase in global population and climate change. In order to provide sufficient food to feed more people, we must develop crops that can produce higher yields. Plant early vigor traits, early growth rate (EGR), early plant height (EPH), inter-node length, and node count are important traits that are related to crop yield. Glycine soja, the wild counterpart to cultivated soybean, Glycine max, harbors much higher genetic diversity and can grow in diverse environments. It can also cross easily with cultivated soybean. Thus, it holds a great potential in developing soybean cultivars with beneficial agronomic traits. In this study, we used 225 wild soybean accessions originally from diverse environments across its geographic distribution in East Asia. We quantified the natural variation of several early vigor traits, investigated the relationships among them, and dissected the genetic basis of these traits by applying a Genome-Wide Association Study (GWAS) with genome-wide single nucleotide polymorphism (SNP) data. Our results showed positive correlation between all early vigor traits studied. A total of 12 SNPs significantly associated with EPH were identified with 4 shared with EGR. We also identified two candidate genes, Glyma.07G055800.1 and Glyma.07G055900.1, playing important roles in influencing trait variation in both EGR and EPH in G. soja.
Keyphrases
  • genome wide
  • dna methylation
  • climate change
  • genetic diversity
  • copy number
  • genome wide association study
  • lymph node
  • gene expression
  • machine learning
  • electronic health record
  • drug induced
  • high speed