Poly(nickel-ethylenetetrathiolate) and Its Analogs: Theoretical Prediction of High-Performance Doping-Free Thermoelectric Polymers.
Wen ShiGang WuKedar HippalgaonkarJian-Sheng WangJian Wei XuShuo-Wang YangPublished in: Journal of the American Chemical Society (2018)
It is generally deemed that doping is a must for polymeric materials to achieve their high thermoelectric performance. We herein present the first report that intrinsically metallic behaviors and high-performance thermoelectric power factors can coexist within doping-free linear-backbone conducting polymers, poly(nickel-ethylenetetrathiolate) and its analogs. On the basis of density functional calculations, we have corroborated that four crystalline π- d conjugated transition-metal coordination polymers, including poly(Ni-C2S4), poly(Ni-C2Se4), poly(Pd-C2S4) and poly(Pt-C2S4) exhibit intrinsically metallic behavior arising from the formation of dense intermolecular interaction networks between sulfur/selenium atoms. They show moderate carrier concentrations (1019-1021 cm-3) and decent conductivities (103-104 S cm-1), among which, poly(Ni-C2S4), poly(Ni-C2Se4) and poly(Pd-C2S4) possess high power factors (∼103 μW m-1 K-2).