Login / Signup

Carrier Solvents of Electronic Nicotine Delivery Systems Alter Pulmonary Surfactant.

Nathalie HayeckCarl ZoghzoghiEbrahim KaramRola SalmanNareg KaraoghlanianAlan ShihadehThomas EissenbergSalah Zein El DineNajat Aoun Saliba
Published in: Chemical research in toxicology (2021)
In late 2019, hundreds of users of electronic products that aerosolize a liquid for inhalation were hospitalized with a variety of respiratory and gastrointestinal symptoms. While some investigations have attributed the disease to the presence of vitamin E acetate in liquids that also contained tetrahydrocannabinol, some evidence suggests that chronic inhalation of two common solvents used in electronic nicotine delivery systems (ENDS), propylene glycol (PG) and vegetable glycerin (VG), can interfere with the lipid components of pulmonary surfactant and cause or exacerbate pulmonary injury. The interaction between PG, VG, and lung surfactant is not yet understood. This study presents an examination of the molecular interactions of PG and VG with lung surfactant mimicked by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The interaction of DPPC and PG-VG is studied by attenuated total reflectance fourier transform infrared spectroscopy. The results showed that PG and VG altered the molecular alignment of the DPPC surfactant. The orientation of the surfactant at the surface of the lung affects the surface tension at the air-water interface, thereby influencing breathing. These findings suggest that chronic aerosolization of the primary solvents in ENDS might alter the function of pulmonary surfactant.
Keyphrases
  • pulmonary hypertension
  • ionic liquid
  • single molecule