Login / Signup

How Good Are Current Docking Programs at Nucleic Acid-Ligand Docking? A Comprehensive Evaluation.

De-Jun JiangHuifeng ZhaoHongyan DuYafeng DengZhenxing WuJike WangYundian ZengHaotian ZhangXiaorui WangJian WuChang-Yu HsiehTing-Jun Hou
Published in: Journal of chemical theory and computation (2023)
Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation ( R p = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
Keyphrases