Self-Healing Elastomers with Unprecedented Ultrahigh Strength, Superhigh Fracture Energy, Excellent Puncture Resistance, and Durability Based on Supramolecule Interlocking Networks Formed by Interlaced Hydrogen Bonds.
Haoxiang RongZhenpeng ZhangYanan ZhangXun LuPublished in: ACS applied materials & interfaces (2024)
Due to the multiple different properties in self-healing elastomers that are mutually exclusive based on the different and contradictory molecule chain structures, simultaneously achieving the ultrahigh mechanical performance and high durability of self-healing elastomers is a great challenge and the goal that has always been pursued. Herein, we report a novel strategy to fabricate a self-healing elastomer by introducing interlaced hydrogen bonds with superhigh binding energy. Distinguishing from the quadruple hydrogen bonds reported already, the interlaced hydrogen bond with a lower repulsive secondary interaction and higher binding energy is composed of two molecule units with different lengths and steric hindrance. Connected by the interlaced hydrogen bonds, a supramolecule interlocking network is formed to lock the polymer chains at room temperature, endowing the poly(urethane-urea) elastomer with an unprecedented ultrahigh strength (117.5 MPa, even higher than some plastics), the superhigh fracture energy (522.46 kJ m -2 ), and an excellent puncture resistance (puncture force reached 181.9 N). Moreover, the elastomers also exhibited excellent self-healing properties (healing efficiency up to 95.8%), high transparency (the average transmittance up to 91.0%), and good durability (including thermal decomposition resistance, thermal oxidation aging resistance, water resistance, and solvent resistance), providing a theoretical basis and technical reference in the development and broadening the application prospects of self-healing elastomers.