Login / Signup

Ammonia Synthesis Using Single-Atom Catalysts Based on Two-Dimensional Organometallic Metal Phthalocyanine Monolayers under Ambient Conditions.

Chun-Xiang HuangGuoliang LiLi-Ming YangEric Ganz
Published in: ACS applied materials & interfaces (2020)
We have identified three novel metal phthalocyanine (MPc, M = Mo, Re, and Tc) single-atom catalyst candidates with excellent predicted performance for the production of ammonia from electrocatalytic nitrogen reduction reaction (NRR) through a combination of high-throughput screening and first-principles calculations on a series of 3d, 4d, and 5d transition metals anchored onto extended Pc monolayer catalysts. Analysis of the energy band structures and projected density of states of N2-MPc revealed significant orbital hybridization and charge transfer between the adsorbed N2 and catalyst MPc, which accounts for the high catalytic activity. Among 30 MPc catalysts, MoPc and TcPc monolayers were found to be the most promising new NRR catalysts, as they exhibit excellent stability, low onset potential, and high selectivity. A comprehensive reaction pathway search found that the maximum free energy changes for the MoPc and TcPc monolayers are 0.33 and 0.54 eV, respectively. As a distinctive nature of this work, the hybrid reaction pathway was considered extensively and searched systematically. The onset potential of the hybrid pathway is found to be smaller than or comparable to that of the commonly known pure pathway. Thus, the hybrid path is highly competitive with low onset potential and high activity. The hybrid pathway is expected to have an important impact on future research on the mechanism of NRR, and it will open up a new way to explore the mechanism of the NRR reaction. We hope that our work will provide impetus to the creation of new catalysts for reduction of N2 to NH3. This work provides new insights into the rational design of NRR catalysts and explores novel reaction pathways under ambient or mild conditions.
Keyphrases