Population Distributions from Native Mass Spectrometry Titrations Reveal Nearest-Neighbor Cooperativity in the Ring-Shaped Oligomeric Protein TRAP.
Melody L HolmquistElihu C IhmsPaul GollnickVicki H WysockiMark P FosterPublished in: Biochemistry (2020)
Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding, it is necessary to define, at a microscopic level, the thermodynamic consequences of binding of each ligand to its energetically coupled site(s). However, extracting these microscopic constants is difficult for macromolecules with more than two binding sites, because the observable [e.g., nuclear magnetic resonance (NMR) chemical shift changes, fluorescence, and enthalpy] can be altered by allostery, thereby distorting its proportionality to site occupancy. Native mass spectrometry (MS) can directly quantify the populations of homo-oligomeric protein species with different numbers of bound ligands, provided the populations are proportional to ion counts and that MS-compatible electrolytes do not alter the overall thermodynamics. These measurements can help decipher allosteric mechanisms by providing unparalleled access to the statistical thermodynamic partition function. We used native MS (nMS) to study the cooperative binding of tryptophan (Trp) to Bacillus stearothermophilus trp RNA binding attenuation protein (TRAP), a ring-shaped homo-oligomeric protein complex with 11 identical binding sites. MS-compatible solutions did not significantly perturb protein structure or thermodynamics as assessed by isothermal titration calorimetry and NMR spectroscopy. Populations of Trpn-TRAP11 states were quantified as a function of Trp concentration by nMS. The population distributions could not be explained by a noncooperative binding model but were described well by a mechanistic nearest-neighbor cooperative model. Nonlinear least-squares fitting yielded microscopic thermodynamic constants that define the interactions between neighboring binding sites. This approach may be applied to quantify thermodynamic cooperativity in other ring-shaped proteins.