Login / Signup

Metal Bioaccumulation, Cytogenetic and Clinico-Biochemical Alterations in Rattus norvegicus Exposed In Situ to a Municipal Solid Waste Landfill in Lagos, Nigeria.

Adeyinka M GbadeboOkunola Adenrele AlabiChibuisi Gideon AlimbaAdekunle A Bakare
Published in: Biological trace element research (2021)
This study aimed at determining in animal model the health effects of in situ exposure to landfill chemicals. We evaluated metal concentrations in tissues and cytogenetic and clinico-biochemical effects in Wistar rats (Rattus norvegicus) exposed in situ at Olusosun landfill in Lagos, Nigeria. Male rats (n = 30/point) were exposed at three different points to ambient air and underground water (via drinking) at the landfill for 4-, 8-, 12-, 16-, 20- and 24-week periods. Rats concurrently sited at a residential area, 17.3 km from the landfill site served as control. There was significantly (p < 0.05) time-dependent: accumulation of lead, cadmium, chromium, copper and zinc in the liver and kidney and increase in body weight gain, in exposed rats compared to control. There was significant induction of micronuclei and cytotoxicity (reduced PCE/NCE ratios) in exposed rats. Haematological parameters (RBC, PCV, Hb and WBC) and serum biomarkers of hepato-renal damage [aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) activities; creatinine and urea levels] revealed significant increases. There was significant increase in hepatic levels of reduced glutathione, malondialdehyde, catalase activities, and decrease in superoxide dismutase, at all periods. Chromium and copper concentrations in the liver and kidney revealed significant positive correlations with either one or more of AST, ALT, LDH and urea. Significant metal concentrations in the underground water and tissues suggest that heavy metals are responsible for the observed alterations, and this may have been via oxidative stress. These findings suggest potential health risk due to occupational and residential exposure to landfill pollutants.
Keyphrases