Login / Signup

Peroxo Species Formed in the Bulk of Silicate Cathodes.

Zhenlian ChenBjoern SchwarzXianhui ZhangWenqiang DuLirong ZhengAiling TianYing ZhangZhiyong ZhangXiao Cheng ZengZhifeng ZhangLiyuan HuaiJinlei WuHelmut EhrenbergDeyu WangJun Li
Published in: Angewandte Chemie (International ed. in English) (2021)
Oxygen redox in Li-rich oxides may boost the energy density of lithium-ion batteries by incorporating oxygen chemistry in solid cathodes. However, oxygen redox in the bulk usually entangles with voltage hysteresis and oxygen release, resulting in a prolonged controversy in literature on oxygen transformation. Here, we report spectroscopic evidence of peroxo species formed and confined in silicate cathodes amid oxygen redox at high voltage, accompanied by Co2+ /Co3+ redox dominant at low voltage. First-principles calculations reveal that localized electrons on dangling oxygen drive the O-O dimerization. The covalence between the binding cation and the O-O dimer determines the degree of electron transfer in oxygen transformation. Dimerization induces irreversible structural distortion and slow kinetics. But peroxo formation can minimize the voltage drop and volume expansion in cumulative cationic and anionic redox. These findings offer insights into oxygen redox in the bulk for the rational design of high-energy-density cathodes.
Keyphrases
  • electron transfer
  • systematic review
  • dna methylation
  • molecular dynamics
  • genome wide
  • single cell
  • density functional theory
  • binding protein