Login / Signup

Pd(II)/LA-catalyzed acetanilide olefination with dioxygen.

Kaiwen LiShuangfeng DongShuang-Long LiZhuqi ChenGuochuan Yin
Published in: Organic & biomolecular chemistry (2024)
Transition-metal-catalyzed aromatic olefination through direct C-H activation represents an atom and step-economic route for versatile pharmaceutical syntheses, and in many cases, different stoichiometric oxidants are frequently employed for achieving a reasonable catalytic efficiency of the transition metal ions. Herein, we report a Lewis acid promoted Pd(II)-catalyzed acetanilide olefination reaction with atmospheric dioxygen as the oxidant source. The linkage of the Lewis acid to the Pd(II) species through a diacetate bridge significantly improved its catalytic efficiency, and independent kinetic studies on the olefination step revealed that adding the Lewis acid significantly accelerated the olefination rate as well as the C-H activation step. A strong basicity of the internal base in the Pd(II) salt also benefited the olefination reaction plausibly through base-assisted β-hydride elimination.
Keyphrases