Login / Signup

Restriction of photoinduced electron transfer as a mechanism for the aggregation-induced emission of a trityl-functionalised maleimide fluorophore.

Weijie ChiPing-Ping Sun
Published in: Physical chemistry chemical physics : PCCP (2023)
The restriction of intramolecular motion (RIM) and restricted access to a conical intersection (RACI) have been accepted as general working mechanisms for aggregation-induced emission (AIE) phenomena. However, as the family of AIE molecules grows, the RIM and RACl mechanisms cannot be used to fully understand some AIE phenomena. Herein, the restriction of the photoinduced electron transfer (RPET) state is proposed to rationalize the AIE phenomena of trityl-functionalised maleimide molecule based on density functional theory calculations. The "state-crossing from a locally excited to an electron transfer state" (SLEET) model was employed to predict the ON/OFF molecular PET in solution and solid states. According to the SLEET model, we showed that a non-emissive electron transfer excited state leads to the fluorescence quenching of trityl-functionalised maleimide in solution. However, due to the reduced polarity of the environment in aggregates, the electron transfer state is thermodynamically inaccessible, and a low-lying locally excited state exhibits intense emission. These findings provide a theoretical foundation to understand the working mechanisms of AIE molecules and the design of new AIEgens. We expect that the RPET mechanism can be used to screen potential AIEgens using the SLEET model.
Keyphrases