Login / Signup

Protein-coated nanostructured surfaces affect the adhesion of Escherichia coli .

Pawel KallasHåkon ValenMats HulanderNikolaj GadegaardJohn Stormonth-DarlingPadraic O'ReillyBernd ThiedeMartin AnderssonHåvard Jostein Haugen
Published in: Nanoscale (2022)
Developing new implant surfaces with anti-adhesion bacterial properties used for medical devices remains a challenge. Here we describe a novel study investigating nanotopography influences on bacterial adhesion on surfaces with controlled interspatial nanopillar distances. The surfaces were coated with proteins (fibrinogen, collagen, serum and saliva) prior to E. coli-WT adhesion under flow conditions. PiFM provided chemical mapping and showed that proteins adsorbed both between and onto the nanopillars with a preference for areas between the nanopillars. E. coli-WT adhered least to protein-coated areas with low surface nanopillar coverage, most to surfaces coated with saliva, while human serum led to the lowest adhesion. Protein-coated nanostructured surfaces affected the adhesion of E. coli-WT .
Keyphrases