Login / Signup

A Series of Dimeric Cobalt Complexes Bridged by N-Heterocyclic Phosphido Ligands.

Andrew M PoitrasMark W BezpalkoCurtis E MooreDiane A DickieBruce M FoxmanChristine M Thomas
Published in: Inorganic chemistry (2020)
A tridentate [PPP] ligand has been used to construct a series of dimeric cobalt complexes and explore cooperative multielectron redox processes that are both metal- and ligand-centered. Reduction of (PPClP)CoCl2 (1) with excess magnesium affords the CoICoI N-heterocyclic phosphido (NHP-)-bridged symmetric dimer [(μ-PPP)Co]2 (2). Two-electron oxidation of 2 with FcPF6 generates an asymmetrically bridged dication [(μ-PPP)Co]2[PF6]2 (3) in which the oxidation has occurred in a delocalized fashion throughout the Co2P2 core. In contrast, [(μ-PPP)Co]2+ (5), which can be generated either by one-electron oxidation of 2 with FcPF6 or comportionation of 2 and 3, features an asymmetric geometry and localized mixed valence. Treatment of 1 with the milder reductants CoCp2 and KBEt3H does not lead to formation of 2, 3, or 5 but instead generates dimeric species [(PPP)CoCl]2 (6) and [(PPP)CoH]2 (7). Unlike 2-5, where the phosphine side arms of the tridentate [PPP] ligand span the two Co centers, complex 6 and 7 are connected solely by NHP- ligands that bridge the two (PPP)Co fragments.
Keyphrases
  • electron transfer
  • nitric oxide
  • gold nanoparticles
  • reduced graphene oxide
  • combination therapy
  • metal organic framework