Login / Signup

Comprehensive In Silico Analysis of RNA Silencing-Related Genes and Their Regulatory Elements in Wheat ( Triticum aestivum L.).

Zobaer AkondHafizur RahmanMd Asif AhsanMd Parvez MosharafMunirul AlamMd Nurul Haque Mollah
Published in: BioMed research international (2022)
Dicer-like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) are known as the three major gene families that act as the critical components of RNA interference or silencing mechanisms through the noncoding small RNA molecules (miRNA and siRNA) to regulate the expressions of protein-coding genes in eukaryotic organisms. However, most of their characteristics including structures, chromosomal location, subcellular locations, regulatory elements, and gene networking were not rigorously studied. Our analysis identified 7 TaDCL , 39 TaAGO , and 16 TaRDR genes as RNA interference (RNAi) genes from the wheat genome. Phylogenetic analysis of predicted RNAi proteins with the RNAi proteins of Arabidopsis and rice showed that the predicted proteins of TaDCL, TaAGO, and TaRDR groups are clustered into four, eight, and four subgroups, respectively. Domain, 3D protein structure, motif, and exon-intron structure analyses showed that these proteins conserve identical characteristics within groups and maintain differences between groups. The nonsynonymous/synonymous mutation ratio (Ka/Ks) < 1 suggested that these protein sequences conserve some purifying functions. RNAi genes networking with TFs revealed that ERF, MIKC-MADS, C2H2, BBR-BPC, MYB, and Dof are the key transcriptional regulators of the predicted RNAi-related genes. The cis -regulatory element (CREs) analysis detected some important CREs of RNAi genes that are significantly associated with light, stress, and hormone responses. Expression analysis based on an online database exhibited that almost all of the predicted RNAi genes are expressed in different tissues and organs. A case-control study from the gene expression level showed that some RNAi genes significantly responded to the drought and heat stresses. Overall results would therefore provide an excellent basis for in-depth molecular investigation of these genes and their regulatory elements for wheat crop improvement against different stressors.
Keyphrases