Login / Signup

Environmental Polymer Degradation: Using the Distonic Radical Ion Approach to Study the Gas-Phase Reactions of Model Polyester Radicals.

Bethany I TaggertRichard A J O'HairUta Wille
Published in: The journal of physical chemistry. A (2017)
A novel precursor to the distonic O- and C-centered radical cations Oxo+O• and Oxo+C• was designed and synthesized, which represents model systems for radicals produced during polyester degradation. The precursor is equipped with a nitrate functional group, which serves as a masked site for these alkoxyl and carbon radicals that are unleashed through collision-induced dissociation (CID). Oxo+O• and Oxo+C• feature a cyclic carboxonium ion as permanent charge tag to enable monitoring their ion-molecule reactions on the millisecond to second time scale in the ion trap of the mass spectrometer. The reactions of Oxo+O• and Oxo+C• with cyclohexene, cyclohexadiene, ethyl acetate, 1,1-dimethoxyethane, and 1,2-dimethoxyethane, which exhibit structural features present in both intact and defective polyesters, were explored through product and kinetic studies to identify "hot spots" for radical-induced damage in polyesters. All reactions with Oxo+O• were extremely fast and proceeded predominantly through HAT. Oxo+C• was about two orders of magnitude less reactive and did not noticeably damage aliphatic ester moieties through hydrogen abstraction on the time scale of our experiments. Radical addition to alkene π systems was identified as an important pathway for C-radicals, which needs to be included in polymer degradation mechanisms.
Keyphrases
  • high glucose
  • oxidative stress
  • nitric oxide
  • high resolution
  • drug induced
  • ionic liquid
  • mass spectrometry
  • endothelial cells