In silico proteomic and phylogenetic analysis of the outer membrane protein repertoire of gastric Helicobacter species.
Eva BauwensMyrthe JoostenJoemar TagannaMirko RossiAyla DebraekeleerAlfred TayFanny PetersSteffen BackertJames G FoxRichard DucatelleHan RemautFreddy HaesebrouckAnnemieke SmetPublished in: Scientific reports (2018)
Helicobacter (H.) pylori is an important risk factor for gastric malignancies worldwide. Its outer membrane proteome takes an important role in colonization of the human gastric mucosa. However, in zoonotic non-H. pylori helicobacters (NHPHs) also associated with human gastric disease, the composition of the outer membrane (OM) proteome and its relative contribution to disease remain largely unknown. By means of a comprehensive survey of the diversity and distribution of predicted outer membrane proteins (OMPs) identified in all known gastric Helicobacter species with fully annotated genome sequences, we found genus- and species-specific families known or thought to be implicated in virulence. Hop adhesins, part of the Helicobacter-specific family 13 (Hop, Hor and Hom) were restricted to the gastric species H. pylori, H. cetorum and H. acinonychis. Hof proteins (family 33) were putative adhesins with predicted Occ- or MOMP-family like 18-stranded β-barrels. They were found to be widespread amongst all gastric Helicobacter species only sporadically detected in enterohepatic Helicobacter species. These latter are other members within the genus Helicobacter, although ecologically and genetically distinct. LpxR, a lipopolysaccharide remodeling factor, was also detected in all gastric Helicobacter species but lacking as well from the enterohepatic species H. cinaedi, H. equorum and H. hepaticus. In conclusion, our systemic survey of Helicobacter OMPs points to species and infection-site specific members that are interesting candidates for future virulence and colonization studies.