Login / Signup

Sequence Ion Structures and Dissociation Chemistry of Deprotonated Sucrose Anions.

Benjamin J BythellJordan M RabusAshley R WagonerMaha T AbutokaikahPhilippe Maître
Published in: Journal of the American Society for Mass Spectrometry (2018)
We investigate the tandem mass spectrometry of regiospecifically labeled, deprotonated sucrose analytes. We utilize density functional theory calculations to model the pertinent gas-phase fragmentation chemistry of the prevalent glycosidic bond cleavages (B1-Y1 and C1-Z1 reactions) and compare these predictions to infrared spectroscopy experiments on the resulting B1 and C1 product anions. For the C1 anions, barriers to interconversion of the pyranose [α-glucose-H]-, C1 anions to entropically favorable ring-open aldehyde-terminated forms were modest (41 kJ mol-1) consistent with the observation of a band assigned to a carbonyl stretch at ~ 1680-1720 cm-1. For the B1 anions, our transition structure calculations predict the presence of both deprotonated 1,6-anhydroglucose and carbon 2-ketone ((4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)dihydro-2H-pyran-3(4H)-one) anion structures, with the latter predominating. This hypothesis is supported by our spectroscopic data which show diagnostic bands at 1600, 1674, and 1699 cm-1 (deprotonated carbon 2-ketone structures), and at ~ 1541 cm-1 (both types of structure) and RRKM rate calculations. The deprotonated carbon 2-ketone structures are also the lowest energy product B1 anions. Graphical Abstract ᅟ.
Keyphrases