Login / Signup

Melatonin as an Agent for Direct Pulp-Capping Treatment.

Julia Guerrero-GironésAntonia Alcaina-LorenteMaría Clara OrtizEduardo Ortiz-RuizMaria Pilar Pecci-LloretFrancisco Javier Rodríguez-LozanoCarlos Manuel MartínezAntonio José Ortiz-Ruiz
Published in: International journal of environmental research and public health (2020)
Melatonin plays an essential role in the regulation of bone growth. The actions that melatonin exerts on odontoblasts may be similar to its action on osteoblasts. This research aimed to evaluate the pulp response to melatonin used for direct pulp capping to evaluate the antioxidant effect of melatonin administered orally and its influence on dental pulp. Direct pulp capping was performed on the upper molars of Sprague Dawley rats using melatonin or Mineral Trioxide Aggregate (MTA). The study groups were: MTA; Melatonin; MTA + Melatonin administered orally; and Melatonin + Melatonin administered orally. In the latter two groups, the animals drank water dosed with melatonin ad libitum (10 mg/100 mL). After 30 days, the animals were sacrificed, and 5 ml of blood, the kidneys, and the liver were extracted in order to evaluate oxidative stress using thiobarbituric acid reactive substances testing (TBARS). Fragments of the maxilla containing the study molars were prepared for histological evaluation. The degree of pulp inflammation and pulp necrosis, the presence of reparative dentin and dentin bridging the pulp chamber, the presence and regularity of the odontoblastic layer, and the presence of pulp fibrosis were evaluated. No significant differences were found between the four study groups for any of the studied histological variables. The oral administration of melatonin did not modify the local effects of MTA or melatonin on dental pulp, or reduce basal-level oxidative stress. The effect of melatonin on pulp is similar to that of MTA and may be used as an agent for direct pulp capping.
Keyphrases
  • oxidative stress
  • dna damage
  • ischemia reperfusion injury
  • smoking cessation
  • diabetic rats
  • combination therapy
  • heat shock protein