Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke.
Leonie SchummColine L LemaleSebastian MajorNils HechtMelina Nieminen-KelhäAnna ZdunczykChristina M KowollPeter MartusChristiane M ThielJens P DreierJohannes WoitzikPublished in: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2021)
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Keyphrases
- atrial fibrillation
- middle cerebral artery
- cerebral ischemia
- contrast enhanced
- subarachnoid hemorrhage
- blood pressure
- magnetic resonance imaging
- intensive care unit
- brain injury
- cardiac arrest
- magnetic resonance
- computed tomography
- skeletal muscle
- cognitive impairment
- oxidative stress
- drug induced
- blood brain barrier
- acute respiratory distress syndrome
- atomic force microscopy
- high speed