Login / Signup

Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels.

Chih-Tang LiaoYeng-Long Chen
Published in: Biomicrofluidics (2019)
The cell-free layer thickness of an aggregating red blood cell (RBC) suspension in a rectangular microchannel is investigated by hybrid fluid-particle numerical modeling. Several factors affect the suspension viscosity, cell-free layer thickness, and the cell aggregate distribution. These include the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the effect of the shear rate on the cell-free layer thickness is controversial. We found that the suspension viscosity increases along with a decrease in the cell-free layer thickness as the shear rate increases for aggregating model RBCs at low shear rates. At moderate to high shear rates, the cell-free layer thickness increases with the increasing shear rate from medium to strong shear flow for both 10% and 20% red blood cell suspensions.
Keyphrases
  • cell free
  • red blood cell
  • optical coherence tomography
  • circulating tumor
  • single cell
  • stem cells
  • high intensity