Login / Signup

Effects of equol on multiple K+ channels stably expressed in HEK 293 cells.

Xiu-Ling DengYan WangGuo-Sheng Xiao
Published in: PloS one (2017)
The present study investigated the effects of equol on cardiovascular K+ channel currents. The cardiovascular K+ channel currents were determined in HEK 293 cells stably expressing cloned differential cardiovascular K+ channels with conventional whole-cell patch voltage-clamp technique. We found that equol inhibited hKv1.5 (IC50: 15.3 μM), hKv4.3 (IC50: 29.2 μM and 11.9 μM for hKv4.3 peak current and charge area, respectively), IKs (IC50: 24.7 μM) and IhERG (IC50: 31.6 and 56.5 μM for IhERG.tail and IhERG.step, respectively), but not hKir2.1 current, in a concentration-dependent manner. Interestingly, equol increased BKCa current with an EC50 of 0.1 μM. It had no significant effect on guinea pig ventricular action potentials at concentrations of ≤3 μM. These results demonstrate that equol inhibits several cardiac K+ currents at relatively high concentrations, whereas it increases BKCa current at very low concentrations, suggesting that equol is a safe drug candidate for treating patients with cerebral vascular disorders.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • heart failure
  • left ventricular
  • cell death
  • emergency department
  • stem cells
  • cell therapy
  • signaling pathway
  • atrial fibrillation