Login / Signup

Biomimetic Transformation of p-Menthene Glucosides into p-Cymenes and Carvotanacetone.

Julio C Pardo-NovoaHéctor M Arreaga-GonzálezSinuhé Galván-GómezGabriela Rodríguez-GarcíaRosa E Del RíoCarlos Martín Cerda-García-RojasPedro Joseph-NathanMario A Gómez-Hurtado
Published in: Journal of natural products (2019)
A biomimetic transformation of p-menthene glucosides into aromatic monoterpenoids that alluded to mechanisms for essential oil metabolism, which lines up with the precepts of molecular economy, is described. Acid treatment of (-)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene 3- O-β-d-glucopyranoside (1) and (-)-(3 S,4 R,5 R,6 S)-3,5,6-trihydroxy-1-menthene 3- O-β-d-glucopyranoside (2), from Ageratina glabrata, yielded p-cymene (7) and carvacrol (9). The stable oxidized intermediates (+)-(3 S,4 S,6 R)-3,6-dihydroxy-1-menthene (3), (+)-(1 S,4 S,6 R)-1,6-dihydroxy-2-menthene (4), (+)-(1 R,4 S,6 R)-1,6-dihydroxy-2-menthene (5), (+)-(4 S,6 R)-yabunikkeol (6), (+)-(4 S)-carvotanacetone (8), (+)-(1 S,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (15), (+)-(1 R,4 S,5 R,6 R)-1,5,6-trihydroxy-2-menthene (16), and the new (+)-(4 S,5 R,6 S)-1(7),2-menthadiene (17) permitted establishment of the reaction mechanisms. The reactivity of the hydroxy groups of 4 and 5, as well as those of 15 and 16, was compared by acetylation reactions and supported by DFT calculations, revealing diminished reactivity in 4 and 15 due to the cis configuration of their hydroxy groups at C-1 and C-6. In addition, p-cymene (7) was detected as one of the major constituents of the essential oil of A. glabrata, which matches well with the biomimetic study.
Keyphrases
  • essential oil
  • density functional theory
  • candida albicans
  • tissue engineering
  • molecular dynamics
  • molecular docking
  • replacement therapy
  • histone deacetylase