MHC-associated peptide proteomics enabling highly sensitive detection of immunogenic sequences for the development of therapeutic antibodies with low immunogenicity.
Nobuo SekiguchiChiyomi KuboAyako TakahashiKumiko MuraokaAkira TakeiriShunsuke ItoMariko YanoFuta MimotoAtsuhiko MaedaYuki IwayanagiTetsuya WakabayashiShotaro TakataNaoaki MuraoShuichi ChibaMasaki IshigaiPublished in: mAbs (2018)
Immunogenicity is a key factor capable of influencing the efficacy and safety of therapeutic antibodies. A recently developed method called MHC-associated peptide proteomics (MAPPs) uses liquid chromatography/mass spectrometry to identify the peptide sequences derived from a therapeutic protein that are presented by major histocompatibility complex class II (MHC II) on antigen-presenting cells, and therefore may induce immunogenicity. In this study, we developed a MAPPs technique (called Ab-MAPPs) that has high throughput and can efficiently identify the MHC II-presented peptides derived from therapeutic antibodies using magnetic nanoparticle beads coated with a hydrophilic polymer in the immunoprecipitation process. The magnetic beads could identify more peptides and sequence regions originating from infliximab and adalimumab in a shorter measurement time than Sepharose beads, which are commonly used for MAPPs. Several sequence regions identified by Ab-MAPPs from infliximab corresponded to immunogenic sequences reported by other methods, which suggests the method's high potential for identifying significant sequences involved in immunogenicity. Furthermore, our study suggests that the Ab-MAPPs method can recognize the difference of a single amino acid residue between similar antibody sequences with different levels of T-cell proliferation activity and can identify potentially immunogenic peptides with high binding affinity to MHC II. In conclusion, Ab-MAPPs is useful for identifying the immunogenic sequences of therapeutic antibodies and will contribute to the design of therapeutic antibodies with low immunogenicity during the drug discovery stage.