Infectious Laryngotracheitis Virus Viral Chemokine-Binding Protein Glycoprotein G Alters Transcription of Key Inflammatory Mediators In Vitro and In Vivo.
Mauricio J C CoppoJoanne M DevlinAlistair R LegionePaola K VazSang-Won LeeJosé A QuinterosJames R GilkersonNino FicorilliPatrick C ReadingAmir H NoormohammadiCarol A HartleyPublished in: Journal of virology (2017)
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that infects chickens, causing upper respiratory tract disease and significant losses to poultry industries worldwide. Glycoprotein G (gG) is a broad-range viral chemokine-binding protein conserved among most alphaherpesviruses, including ILTV. A number of studies comparing the immunological parameters between infection with gG-expressing and gG-deficient ILTV strains have demonstrated that expression of gG is associated with increased virulence, modification of the amount and the composition of the inflammatory response, and modulation of the immune responses toward antibody production and away from cell-mediated immune responses. The aims of the current study were to examine the establishment of infection and inflammation by ILTV and determine how gG influences that response to infection. In vitro infection studies using tracheal organ tissue specimen cultures and blood-derived monocytes and in vivo infection studies in specific-pathogen-free chickens showed that leukocyte recruitment to the site of infection is an important component of the induced pathology and that this is influenced by the expression of ILTV gG and changes in the transcription of the chicken orthologues of mammalian CXC chemokine ligand 8 (CXCL8), chicken CXCLi1 and chicken CXCLi2, among other cytokines and chemokines. The results from this study demonstrate that ILTV gG interferes with chemokine and cytokine transcription at different steps of the inflammatory cascade, thus altering inflammation, virulence, and the balance of the immune response to infection.IMPORTANCE Infectious laryngotracheitis virus is an alphaherpesvirus that expresses gG, a conserved broad-range viral chemokine-binding protein known to interfere with host immune responses. However, little is known about how gG modifies virulence and influences the inflammatory signaling cascade associated with infection. Here, data from in vitro and in vivo infection studies are presented. These data show that gG has a direct impact on the transcription of cytokines and chemokine ligands in vitro (such as chicken CXCL8 orthologues, among others), which explains the altered balance of the inflammatory response that is associated with gG during ILTV infection of the upper respiratory tract of chickens. This is the first report to associate gG with the dysregulation of cytokine transcription at different stages of the inflammatory cascade triggered by ILTV infection of the natural host.