Login / Signup

A Structure-Based Drug Discovery Paradigm.

Maria BatoolBilal AhmadSang-Dun Choi
Published in: International journal of molecular sciences (2019)
Structure-based drug design is becoming an essential tool for faster and more cost-efficient lead discovery relative to the traditional method. Genomic, proteomic, and structural studies have provided hundreds of new targets and opportunities for future drug discovery. This situation poses a major problem: the necessity to handle the "big data" generated by combinatorial chemistry. Artificial intelligence (AI) and deep learning play a pivotal role in the analysis and systemization of larger data sets by statistical machine learning methods. Advanced AI-based sophisticated machine learning tools have a significant impact on the drug discovery process including medicinal chemistry. In this review, we focus on the currently available methods and algorithms for structure-based drug design including virtual screening and de novo drug design, with a special emphasis on AI- and deep-learning-based methods used for drug discovery.
Keyphrases
  • drug discovery
  • artificial intelligence
  • big data
  • machine learning
  • deep learning
  • convolutional neural network
  • small molecule
  • adverse drug
  • emergency department
  • current status
  • data analysis
  • label free