Login / Signup

Low-Cost Vibrational Free Energies in Solid Solutions with Machine Learning Force Fields.

Kasper TolborgAron Walsh
Published in: The journal of physical chemistry letters (2023)
The rational design of alloys and solid solutions relies on accurate computational predictions of phase diagrams. The cluster expansion method has proven to be a valuable tool for studying disordered crystals. However, the effects of vibrational entropy are commonly neglected due to the computational cost. Here, we devise a method for including the vibrational free energy in cluster expansions with a low computational cost by fitting a machine learning force field (MLFF) to the relaxation trajectories available from cluster expansion construction. We demonstrate our method for two (pseudo)binary systems, Na 1- x K x Cl and Ag 1- x Pd x , for which accurate phonon dispersions and vibrational free energies are derived from the MLFF. For both systems, the inclusion of vibrational effects results in significantly better agreement with miscibility gaps in experimental phase diagrams. This methodology can allow routine inclusion of vibrational effects in calculated phase diagrams and thus more accurate predictions of properties and stability for mixtures of materials.
Keyphrases