Login / Signup

Polymerizing M-Series Acceptors for Efficient Polymer Solar Cells: Effect of the Molecular Shape.

Yuhang ZhuHui GuoXiaoying XiongDongdong CaiYunlong MaQingdong Zheng
Published in: Advanced materials (Deerfield Beach, Fla.) (2024)
Currently, high-performance polymerized small-molecule acceptors (PSMAs) based on ADA-type SMAs are still rare and greatly demanded for polymer solar cells (PSCs). Herein, two novel regioregular PSMAs (PW-Se and PS-Se) are designed and synthesized by using centrosymmetric (linear-shaped) and axisymmetric (banana-shaped) ADA-type SMAs as the main building blocks, respectively. It is demonstrated that photovoltaic performance of the PSMAs can be significantly improved by optimizing the configuration of ADA-type SMAs. Compared to the axisymmetric SMA-based polymer (PS-Se), PW-Se using a centrosymmetric SMA as the main building block exhibits better backbone coplanarity thereby resulting in bathochromically shifted absorption with a higher absorption coefficient, tighter interchain π-π stacking, and more favorable blend film morphology. As a result, enhanced and more-balanced charge transport, better exciton dissociation, and reduced charge recombination are achieved for PW-Se-based devices with PM6 as polymer donor. Benefiting from these positive factors, the optimal PM6:PW-Se-based device exhibits a higher power conversion efficiency (PCE) of 15.65% compared to the PM6:PS-Se-based device (8.90%). Furthermore, incorporation of PW-Se as a third component in the binary active layer of PM6:M36 yields ternary devices with an outstanding PCE of 18.0%, which is the highest value for PSCs based on ADA-type SMAs, to the best of the knowledge.
Keyphrases
  • solar cells
  • particulate matter
  • air pollution
  • small molecule
  • heavy metals
  • dna damage
  • risk assessment
  • oxidative stress
  • magnetic resonance
  • single molecule
  • dna repair
  • gold nanoparticles