Login / Signup

Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold.

William I L LawrieM Rimbach-RussFloor van RiggelenNico W HendrickxSander L de SnooA SammakGiordano ScappucciJonas HelsenMenno Veldhorst
Published in: Nature communications (2023)
Practical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with individual qubits, though their performance has been limited to 98.67% when driving two qubits simultaneously. Here we present single-qubit randomized benchmarking in a two-dimensional array of spin qubits, finding native gate fidelities as high as 99.992(1)%. Furthermore, we benchmark single qubit gate performance while simultaneously driving two and four qubits, utilizing a novel benchmarking technique called N-copy randomized benchmarking, designed for simple experimental implementation and accurate simultaneous gate fidelity estimation. We find two- and four-copy randomized benchmarking fidelities of 99.905(8)% and 99.34(4)% respectively, and that next-nearest neighbor pairs are highly robust to cross-talk errors. These characterizations of single-qubit gate quality are crucial for scaling up quantum information technology.
Keyphrases