Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network.
Atsushi TokuhisaYoshinobu AkinagaKei TerayamaYuji OkamotoYasushi OkunoPublished in: Journal of chemical information and modeling (2022)
Femtosecond X-ray pulse lasers are promising probes for the elucidation of the multiconformational states of biomolecules because they enable snapshots of single biomolecules to be observed as coherent diffraction images. Multi-image processing using an X-ray free-electron laser has proven to be a successful structural analysis method for viruses. However, the performance of single-particle analysis (SPA) for flexible biomolecules with sizes ≤100 nm remains difficult. Owing to the multiconformational states of biomolecules and noisy character of diffraction images, diffraction image improvement by multi-image processing is often ineffective for such molecules. Herein, a single-image super-resolution (SR) model was constructed using an SR convolutional neural network (SRCNN). Data preparation was performed in silico to consider the actual observation situation with unknown molecular orientations and the fluctuation of molecular structure and incident X-ray intensity. It was demonstrated that the trained SRCNN model improved the single-particle diffraction image quality, corresponding to an observed image with an incident X-ray intensity (approximately three to seven times higher than the original X-ray intensity), while retaining the individuality of the diffraction images. The feasibility of SPA for flexible biomolecules with sizes ≤100 nm was dramatically increased by introducing the SRCNN improvement at the beginning of the various structural analysis schemes.
Keyphrases
- deep learning
- convolutional neural network
- electron microscopy
- dual energy
- high resolution
- artificial intelligence
- machine learning
- image quality
- computed tomography
- crystal structure
- cardiovascular disease
- photodynamic therapy
- high intensity
- optical coherence tomography
- blood pressure
- big data
- molecular docking
- living cells
- wastewater treatment
- genetic diversity