Dissociation of reading and naming in ventral occipitotemporal cortex.
Oscar WoolnoughNitin TandonPublished in: Brain : a journal of neurology (2024)
Lesions in the language-dominant ventral occipitotemporal cortex (vOTC) can result in selective impairment of either reading or naming, resulting in alexia or anomia. Yet, functional imaging studies that show differential activation for naming and reading do not reveal activity exclusively tuned to one of these inputs. To resolve this dissonance in the functional architecture of the vOTC, we used focused stimulation to the vOTC in 49 adult patients during reading and naming, and generated a population-level, probabilistic map to evaluate if reading and naming are clearly dissociable within individuals. Language mapping (50 Hz, 2829 stimulations) was performed during passage reading (216 positive sites) and visual naming (304 positive sites). Within the vOTC, we isolated sites that selectively disrupted reading (24 sites in 11 patients) or naming (27 sites in 12 patients), and those that disrupted both processes (75 sites in 21 patients). The anteromedial vOTC had a higher probability of producing naming disruption, while posterolateral regions resulted in greater reading-specific disruption. Between them lay a multi-modal region where stimulation disrupted both reading and naming. This work provides a comprehensive view of vOTC organization-the existence of a heteromodal cortex critical to both reading and naming, along with a causally dissociable unimodal naming cortex, and a reading-specific visual word form area in the vOTC. Their distinct roles as associative regions may thus relate to their connectivity within the broader language network that is disrupted by stimulation, more than to highly selective tuning properties. Our work also implies that pre-surgical mapping of both reading and naming is essential for patients requiring vOTC resections, as these functions are not co-localized, and such mapping may prevent the occurrence of unexpected deficits.
Keyphrases
- working memory
- end stage renal disease
- ejection fraction
- chronic kidney disease
- newly diagnosed
- high resolution
- functional connectivity
- peritoneal dialysis
- resting state
- gene expression
- prognostic factors
- autism spectrum disorder
- dna methylation
- mass spectrometry
- traumatic brain injury
- spinal cord injury
- patient reported
- high density
- prefrontal cortex