Login / Signup

Non-Targeted Metabolomics Analysis Revealed the Characteristic Non-Volatile and Volatile Metabolites in the Rougui Wuyi Rock Tea ( Camellia sinensis ) from Different Culturing Regions.

Kai XuCaiyun TianChengzhe ZhouChen ZhuJingjing WengYun SunYuling LinZhong-Xiong LaiYuqiong Guo
Published in: Foods (Basel, Switzerland) (2022)
Rougui Wuyi Rock tea (WRT) with special flavor can be affected by multiple factors that are closely related to the culturing regions of tea plants. The present research adopted non-targeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), aroma activity value method (OAV), and chemometrics to analyze the characteristic metabolites of three Rougui WRTs from different culturing regions. The results of sensory evaluation showed that the three Rougui Wuyi Rock teas had significantly different flavor qualities, especially in taste and aroma. Rougui (RG) had a heavy and mellow taste, while cinnamon-like odor Rougui (GPRG) and floral and fruity odor Rougui (HGRG) had a thick, sweet, and fresh taste. The cinnamon-like odor was more obvious and persistent in GPRG than in RG and HGRG. HGRG had floral and fruity characteristics such as clean and lasting, gentle, and heavy, which was more obvious than in RG and GPRG. The results of principal component analysis (PCA) showed that there were significant metabolic differences among the three Rougui WRTs. According to the projection value of variable importance (VIP) of the partial least squares discriminant analysis (PLS-DA), 24 differential non-volatile metabolites were identified. The PLSR analysis results showed that rutin, silibinin, arginine, lysine, dihydrocapsaicin, etc. may be the characteristic non-volatiles that form the different taste outlines of Rougui WRT. A total of 90 volatiles, including aldehydes, alcohols, esters, and hydrocarbons, were identified from the three flavors of Rougui WRT by using GC-MS. Based on OAV values and PLS-DA analysis, a total of 16 characteristic volatiles were identified. The PLSR analysis results showed that 1-penten-3-ol, α-pinene, 2-carene, β-Pinene, dehydrolinalool, adipaldehyde, D-limonene, saffron aldehyde, and 6-methyl-5-hepten-2-one may be the characteristic volatiles that form the different aroma profile of Rougui WRT. These results provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive flavors of Rougui WRT.
Keyphrases
  • mass spectrometry
  • gas chromatography mass spectrometry
  • liquid chromatography
  • ms ms
  • nitric oxide
  • high resolution
  • solid phase extraction
  • tandem mass spectrometry
  • simultaneous determination
  • single cell