Login / Signup

Molecular Markers for Detecting Inflorescence Size of Brassica oleracea L. Crops and B. oleracea Complex Species (n = 9) Useful for Breeding of Broccoli ( B. oleracea var. italica ) and Cauliflower ( B. oleracea var. botrytis ).

Simone TreccarichiHajer Ben AmmarMarwen AmariRiccardo CaliAlessandro TribulatoFerdinando Branca
Published in: Plants (Basel, Switzerland) (2023)
The gene flow from Brassica oleracea L. wild relatives to B. oleracea vegetable crops have occurred and continue to occur ordinarily in several Mediterranean countries, such as Sicily, representing an important hot spot of diversity for some of them, such as broccoli, cauliflower and kale. For detecting and for exploiting the forgotten alleles lost during the domestication processes of the B. oleracea crops, attention has been pointed to the individuation of specific markers for individuating genotypes characterized by hypertrophic inflorescence traits by the marker assisted selection (MAS) during the first plant growing phases after the crosses between broccoli ( B. oleracea var. italica )/cauliflower ( B. oleracea var. botrytis ) with B. oleracea wild relatives (n = 9), reducing the cultivation and evaluation costs. The desired traits often found in several B. oleracea wild relatives are mainly addressed to improve the plant resistance to biotic and abiotic stresses and to increase the organoleptic, nutritive and nutraceutical traits of the products. One of the targeted traits for broccoli and cauliflower breeding is represented by the inflorescences size as is documented by the domestication processes of these two crops. Based on the previous results achieved, the numerical matrix, obtained utilizing five simple sequence repeats (SSRs), was analyzed to assess the relationship among the main inflorescence characteristics and the allelic variation of the SSRs loci analyzed (BoABI1, BoAP1, BoPLD1, BoTHL1 and PBCGSSRBo39), both for the Brassica oleracea and B . oleracea wild relatives (n = 9) accessions set. The main inflorescence morphometric characteristics, such as weight, height, diameter, shape, inflorescence curvature angle and its stem diameter, were registered before the flower anthesis. We analyzed the correlations among the allelic variation of the SSRs primers utilized and the inflorescence morphometric characteristics to individuate genomic regions stimulating the hypertrophy of the reproductive organ. The relationships found explain the diversity among B. oleracea crops and the B. oleracea complex species (n = 9) for the inflorescence size and structure. The individuated markers allow important time reduction during the breeding programs after crossing wild species for transferring useful biotic and abiotic resistances and organoleptic and nutraceutical traits to the B. oleracea crops by MAS.
Keyphrases
  • genome wide
  • high resolution
  • mass spectrometry
  • weight loss
  • physical activity
  • genome wide analysis
  • drug delivery
  • single molecule
  • amino acid
  • optic nerve
  • genome wide association