PABPC1 Enables Cells with the Suspension Cultivation Feature.
Kostya Ken OstrikovYujie MiaoPeiyu HanXuanhao ZhangSiming YangQing LvDong HuaPublished in: ACS synthetic biology (2021)
Cell-based vaccine manufacturing is an important strategy for viral disease prevention. Cultivating cells in suspension could maximize the utility of large bioreactors for cost-effective and scaled up vaccine production, where adapting adherent cells to suspension culture is the bottleneck and key. Through whole transcriptome sequencing of suspension and adherent strains of BHK-21 and CHO-K1 cells followed by the identification of differentially expressed genes, mutational analysis, gene ontology, and pathway enrichment analysis, we identified four candidate genes, PABPC1, LARS, GLUL, PFN1, feasible for genetically modulating anchorage-dependent cells toward cell suspension culture, and experimentally validated the functionality of PABPC1 in both BHK-21 and CHO-K1 cells. Our study unveiled a novel role of PABPC1 that could potentially aid in the establishment of a cost-effective vaccine manufacturing platform relying on cell cultivation in suspension.