Login / Signup

Periodic Stratification of Colloids in a Liquid Phase Produced by a Precipitation Reaction and Gel Swelling.

Pedram TootoonchianGábor HollóRana UzunlarIstván LagziBilge Baytekin
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Pattern formation is a frequent phenomenon occurring in animate and inanimate systems. The interplay between the mass transport of the chemical species and the underlying chemical reaction networks generates most patterns in chemical systems. Periodic precipitation is an emblematic example of reaction-diffusion patterns, in which the process generates a spatial periodic structure in porous media. Here, we use the dormant reagent method to produce colloidal particles of Prussian blue (PB) and PB analogues at the liquid-gel interface. The generated particles produced a stable periodic stratification pattern in time in the liquid phase placed on top of the solid hydrogel. The phenomenon is governed by periodic swelling of the gel driven by the osmotic stress and stability of the formed particles. To illustrate the phenomenon, we developed an extended reaction-diffusion model, which incorporated the gel swelling and sedimentation effect of the formed colloids and could qualitatively reproduce the pattern formation in the liquid phase.
Keyphrases
  • ionic liquid
  • wound healing
  • hyaluronic acid
  • heavy metals
  • drug delivery
  • electron transfer
  • risk assessment
  • aqueous solution
  • molecular dynamics simulations
  • stress induced
  • highly efficient