Login / Signup

Iron, thermal stratification, Eucalyptus sp., and hypoxia: drivers to water blackening in southern China reservoirs.

Yiping LiEyram NorgbeyYa ZhuAmechi S NwankweguRobert Bofah-BuohDesmond AnimGeorgina Esi Takyi-AnnanLinda NuamahPatrick BanaheneYashui PuYanan Huang
Published in: Environmental science and pollution research international (2021)
The management of black water depends primarily on the knowledge of the dynamics of organic matter (OM), iron (Fe), sulfide (S), and manganese (Mn), at the water-sediment boundary (WSB). However, the mechanistic path of these substances leading to black water remains unsettled. In this study, a 35-day field study was conducted using the thin-film diffusion gradient technology (DGT) and the planar optrode to address the unknown combined effects of Fe, Mn, OM, S, and tannins from Eucalyptus species on Tianbao reservoir.Our results indicated that the hypolimnion was hypoxic due to thermal stratification, which caused the reduction of insoluble Fe and Mn from sediments to bottom water. Correlation analysis (Fe:S (r:0.5-0.9); Mn:S (r:0.2-0.8)) and elevated fluxes (Fe2+, Mn2+, S2-) connoted that these parameters interacted chemically to give black matter. The content of OM, Fe2+, and tannic acid in the benthic region diminished remarkably (p < 0.05) from day 1 (strong stratification) to day 35 (weak stratification), connoting that these parameters also interacted chemically to give black matter. The turbidity (clarity of the water) increased from day 1 to 35 with a significant difference (p < 0.05) recorded on day 14 confirming that black water was formed on this day when the thermal structure of the reservoir was annihilated. Correlation analysis supported the assertion that the variability in oxygen and redox conditions caused changes in Fe, Mn, and OM content at the WSB.The finding from the field research provides useful information to stakeholders on how to improve the quality of freshwater management designs.
Keyphrases
  • metal organic framework
  • organic matter
  • room temperature
  • healthcare
  • risk assessment
  • social media
  • visible light
  • drinking water
  • quality improvement
  • ionic liquid
  • iron deficiency