Login / Signup

Development and Temperature Correction of Piezoelectric Ceramic Sensor for Traffic Weighing-In-Motion.

Hailu YangYue YangGuanyi ZhaoYang GuoLinbing Wang
Published in: Sensors (Basel, Switzerland) (2023)
Weighing-In-Motion (WIM) technology is one of the main tools for pavement management. It can accurately describe the traffic situation on the road and minimize overload problems. WIM sensors are the core elements of the WIM system. The excellent basic performance of WIMs sensor and its ability to maintain a stable output under different temperature environments are critical to the entire process of WIM. In this study, a WIM sensor was developed, which adopted a PZT-5H piezoelectric ceramic and integrated a temperature probe into the sensor. The designed WIM sensor has the advantages of having a small size, simple structure, high sensitivity, and low cost. A sine loading test was designed to test the basic performance of the piezoelectric sensor by using amplitude scanning and frequency scanning. The test results indicated that the piezoelectric sensor exhibits a clear linear relationship between input load and output voltage under constant environmental temperature. The linear correlation coefficient R 2 of the fitting line is up to 0.999, and the sensitivity is 4.04858 mV/N at a loading frequency of 2 Hz at room temperature. The sensor has good frequency-independent characteristics. However, the temperature has a significant impact on it. Therefore, the output performance of the piezoelectric ceramic sensor is stabilized under different temperature conditions by using a multivariate nonlinear fitting algorithm for temperature compensation. The fitting result R 2 is 0.9686, the root mean square error (RMSE) is 0.2497, and temperature correction was achieved. This study has significant implications for the application of piezoelectric ceramic sensors in road WIM systems.
Keyphrases
  • low cost
  • room temperature
  • air pollution
  • machine learning
  • computed tomography
  • magnetic resonance imaging
  • ionic liquid
  • deep learning
  • risk assessment
  • climate change
  • quantum dots
  • electron microscopy