Login / Signup

Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom.

Niklas SchütterYuri Correia BarretoVitya VardanyanSönke HornigStephen HyslopSérgio MarangoniLéa Rodrigues-SimioniOlaf PongsCháriston André Dal Belo
Published in: Toxins (2019)
MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.
Keyphrases
  • image quality
  • escherichia coli
  • dual energy
  • spinal cord
  • computed tomography
  • neuropathic pain
  • spinal cord injury
  • magnetic resonance
  • endothelial cells