Algal light sensing and photoacclimation in aquatic environments.
Deqiang DuanmuNathan C RockwellJohn Clark LagariasPublished in: Plant, cell & environment (2017)
Anoxygenic photosynthetic prokaryotes arose in ancient oceans ~3.5 billion years ago. The evolution of oxygenic photosynthesis by cyanobacteria followed soon after, enabling eukaryogenesis and the evolution of complex life. The Archaeplastida lineage dates back ~1.5 billion years to the domestication of a cyanobacterium. Eukaryotic algae have subsequently radiated throughout oceanic/freshwater/terrestrial environments, adopting distinctive morphological and developmental strategies for adaptation to diverse light environments. Descendants of the ancestral photosynthetic alga remain challenged by a typical diurnally fluctuating light supply ranging from ~0 to ~2000 μE m-2 s-1 . Such extreme changes in light intensity and variations in light quality have driven the evolution of novel photoreceptors, light-harvesting complexes and photoprotective mechanisms in photosynthetic eukaryotes. This minireview focuses on algal light sensors, highlighting the unexpected roles for linear tetrapyrroles (bilins) in the maintenance of functional chloroplasts in chlorophytes, sister species to streptophyte algae and land plants.