Login / Signup

Ionic Conductivity of a Lithium-Doped Deep Eutectic Solvent: Glass Formation and Rotation-Translation Coupling.

A SchulzPeter LunkenheimerAlois Loidl
Published in: The journal of physical chemistry. B (2024)
Deep eutectic solvents with admixed lithium salts are considered as electrolytes in electrochemical devices, such as batteries or supercapacitors. Compared to eutectic mixtures of hydrogen-bond donors and lithium salts, their raw-material costs are significantly lower. Not much is known about glassy freezing and rotational-translation coupling of such systems. Here, we investigate these phenomena by applying dielectric spectroscopy to the widely studied deep eutectic solvent glyceline, to which 1 and 5 mol % LiCl were added. Our study covers a wide temperature range, including a deeply supercooled state. The temperature dependences of the detected dipolar reorientation dynamics and ionic direct current (dc) conductivity reveal the signatures of glassy freezing. In comparison to pure glyceline, the lithium admixture leads to a reduction of ionic conductivity, which is accompanied by a reduction of the rotational dipolar mobility. However, this reduction is much smaller than that for deep eutectic solvents (DESs), where one main component is lithium salt, which we trace back to the lower glass-transition temperatures of lithium-doped DESs. In contrast to pure glyceline, the ionic and dipolar dynamics become increasingly decoupled at low temperatures and obey a fractional Debye-Stokes-Einstein relation, as previously found in other glass-forming liquids. The obtained results demonstrate the relevance of decoupling effects and glass transition to the enhancement of the technically relevant ionic conductivity in such lithium-doped DESs.
Keyphrases
  • solid state
  • ionic liquid
  • room temperature
  • quantum dots
  • genome wide
  • metal organic framework
  • immune response
  • high resolution
  • gene expression
  • single molecule
  • simultaneous determination
  • single cell