Chemical Profiling and In Vitro Antiurolithiatic Activity of Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi Along with Its Antioxidant and Antibacterial Properties.
Prasobh K MohanT P Adarsh KrishnaA ThirumuruganT Senthil KumarB D Ranjitha KumariPublished in: Applied biochemistry and biotechnology (2022)
Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi (Fabaceae) is an important medicinal plant used to treat various ailments. In this study, we report the antiurolithiatic, antioxidant, and antibacterial potential of chloroform fraction (CF) from P. gangeticus roots. For the chemical profiling, HPTLC, FT-IR, and GC-MS techniques of the CF were carried out, and phytochemical investigation was revealed that stigmasterol (45.06%) is one of the major components present in the fraction. The nucleation and aggregation assays were used to evaluate the in vitro antiurolithiatic activity at various concentration (2-10 mg/mL) of the CF. The results showed that the chloroform fraction had dose-dependent effects on Calcium Oxalate (CaOx) crystal formation. In both the assays, the maximum concentration of 10 mg/mL has shown better results. This concentration resulted significant increase in CaOx crystal nucleation along with the reduction of crystal size and the inhibition of crystal aggregation. Further, the CF showed stronger antioxidant (DPPH, NO, SOD, TRC) potential with an IC 50 values of 415.9327, 391.729, 275.971, and 419.14 µg/mL, respectively. The antibacterial evaluation displayed effective results in the Agar well diffusion assay against selective urinary tract infection (UTI) pathogens (Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus). A maximum zone of inhibition (ZOI) 12.33 ± 1.05 mm for K pneumonia and minimum ZOI of 8.46 ± 0.27 mm for S. aureus were obtained. Further, the ADME-PK property of the stigmasterol was investigated, and it was found to pass the Lipinski and Ghose rules, supporting the drug-likeliness. This is the first record of the antiurolithiatic potential of P. gangeticus along with antioxidant and antibacterial activities. These findings give an insight into the effective drug development and treatment for kidney stones in future.
Keyphrases
- anti inflammatory
- cystic fibrosis
- urinary tract infection
- oxidative stress
- escherichia coli
- staphylococcus aureus
- silver nanoparticles
- high throughput
- single cell
- pseudomonas aeruginosa
- essential oil
- human health
- emergency department
- biofilm formation
- wound healing
- mass spectrometry
- solid state
- climate change
- gram negative
- multidrug resistant
- extracorporeal membrane oxygenation
- antimicrobial resistance
- methicillin resistant staphylococcus aureus
- adverse drug
- mechanical ventilation