Login / Signup

Evidence for a Proton-Coupled Electron Transfer Mechanism in a Biomimetic System for Monoamine Oxidase B Catalysis.

Akiko NakamuraMarwa Abdel LatifPaul A DeckNeal CastagnoliJames M Tanko
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Mechanistic studies with 5-ethyl-3-methyllumiflavinium (Fl+ ) perchlorate, a biomimetic model for flavoenzyme monoamine oxidase B (MAO-B) catalysis, and the tertiary, allyl amine 1-methyl-4-(1-methyl-1 H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) reveal that proton-coupled electron transfer (PCET) may be an important pathway for MAO catalysis. The first step involves a single-electron transfer (SET) leading to the free radicals Fl. and MMTP. , the latter produced by deprotonation of the initially formed and highly acidic MMTP.+ . Molecular oxygen (O2 ) is found to play a hitherto unrecognized role in the early steps of the oxidation. MMTP and several structurally similar tertiary amines are the only tertiary amines oxidized by MAO, and their structural/electronic properties provide the key to understanding this behavior. A general hypothesis about the role of SET in MAO catalysis, and the recognition that PCET occurs with appropriately substituted substrates is presented.
Keyphrases
  • electron transfer
  • visible light
  • genome wide
  • single cell
  • case control